Solar Powering Your Community Addressing Soft Costs and Barriers

The SunShot Solar Outreach Partnership (SolarOPs) is a U.S. Department of Energy (DOE) program designed to increase the use and integration of solar energy in communities across the US.

- Increase installed capacity of solar electricity in U.S. communities
- Streamline and standardize permitting and interconnection processes
- Improve planning and zoning codes/regulations for solar electric technologies
- Increase access to solar financing options

Resource Solar Powering Your Community Guide

A comprehensive resource to assist local governments and stakeholders in building local solar markets.

www.energy.gov

Sunshot Resource Center Resource

- Case Studies
- Fact Sheets
- How-To Guides
- Model Ordinances
- Technical Reports
- Sample Government Docs

Technical Support

- "Ask an Expert' Live Web Forum"
- Ask an Expert' Web Portal
- Peer Exchange Facilitation
- In-Depth Consultations
- Customized Trainings

	ENERGY
an Expert' Live Web Forums	SunShot Initiative
an Expert' Web Portal	HOME ABOUT SOLAR PROGRAM FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS ELESE + Sunshel Initiative + Information Resources + Solar Energy Resource Center III Bits Male C Phontain Vision C Brave
r Exchange Facilitation	Nome Ask an Expert QUESTIONS BY TOPIC July 30, 2012 QUESTIONS BY TOPIC All Topics Q Our community just added a dozen 240 watt panels to our courthouse annex. I was planning on 240 watt max from the panels, but the inverters are of a lower wattage, 200. Is this common across all applications? Completing Installations on Government Facilitie (1)
epth Consultations	A. First, we recommend using a professional PV system designer and installer. If I understand the question cornectly, the answer is yes, meeters are typically sized at 10-20% below the maximum capacity of the PV panel array. This is because a PV system rately, if ever, operates at its maximum capacity because of clouds, temperatere, dust, inverter efficiency losses, etc. Pystem and as a smaller inverter capacity is usually used to match actual PV system output and because larger inverters are more
tomized Trainings	expensive. In some climates, however, it might maise sense to spend the extra money on a logic capacity inverter, A larger capacity inverter will nuclear and task longer and loaves the PV system owner the potential opportunity to expand the size of the PV array without having to replace the inverter with one of a larger capacity. I have also read abud sizing inverse larger in order to be able to take owntage of "dogs" of cloud" effects—which is really cool and really geeky. See this from <u>Bill Brooks</u> . Planning & Zoning (8)
www4.eere.energy.gov/solar/su	Inspective discrete and the provided provided provided and the provided provide
	taken into account when designing a PV system and so a smaller menter capacity is membry stad to march articul DV octains network and haraw means an encode the fillehold Analysis (1).

For more information email: solar-usa@iclei.org

Jayson Uppal

Meister Consultants Group

Philip Haddix

The Solar Foundation

David Morley

American Planning Association

jayson.uppal@mc-group.com (617) 209-1990 phaddix@solarfound.org (202) 469-3750

dmorley@planning.org (312) 786-6392

Agenda

08:40 - 09:00	Solar 101
08:50 - 09:20	Planning and Zoning for Solar
09:20 - 09:30	Streamlining the Permitting Process
09:30 - 09:40	Break
09:40 - 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
:00 - :20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
:40 - 2:00	Next Steps for Solar in Region

Agenda

08:40 - 09:00	Solar 101
08:50 - 09:20	Planning and Zoning for Solar
09:20 - 09:30	Streamlining the Permitting Process
09:30 - 09:40	Break
09:40 - 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
:00 - :20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
11:40 - 12:00	Next Steps for Solar in Region

Poll Who's in the room?

Poll What is your experience with solar?

Solar Technologies

Solar Photovoltaic (PV)

Solar Hot Water

Concentrated Solar Power

Solar Technologies

Solar Photovoltaic (PV)

Solar Hot Water

Concentrated Solar Power

Panel / Module

Array

U.S. Department of Energy

Workshop Goal Enable local governments to replicate successful solar practices and expand local adoption of solar energy

Regional Solar Market

Explore benefits

and

Overcome barriers

Activity: Identifying Benefits

What is the greatest benefit solar can bring to your community? [Blue Card]

Right Now

During Session

After Break

Activity: Addressing Barriers

What is the greatest barrier to solar adoption in your community? [Green Card]

Right Now

During Session

After Break

Installed Capacity

Top 5 Countries Solar Operating Capacity Germany Germany Italy 35.6% 📕 Japan USA 5.7% Spain **USA** Rest of World

http://www.map.ren21.net/GSR/GSR2012.pdf

Installed Capacity

Total installed solar capacity in the US

4 GW

Capacity installed in Germany in Dec 2011

http://www.map.ren21.net/GSR/GSR2012.pdf

U.S. Department of Energy

Time to Installation

Time to Installation

Photon Magazine

Germany's Success

Consistency and Transparency

through a

Standardized Processes

Regulatory Framework

Agenda

08:40 - 09:00	Solar 101
08:50 - 09:20	Planning and Zoning for Solar
09:20 - 09:30	Streamlining the Permitting Process
09:30 - 09:40	Break
09:40 - 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
:00 - :20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
:40 - 2:00	Next Steps for Solar in Region

Planning and Zoning for Solar

Strategic Points of Intervention

- Does solar play a role in the future vision for your community?
 - How does solar connect to other goals such as greenhouse gas reduction targets or renewable energy portfolio standards?
- Opportunity to gage the level of awareness and support in the community.

Photo: NREL

Photo: www.solar.calfinder.com

- Comprehensive plans
- Sub-area plans
- Functional plans

SOLAR POWERING YOUR COMMUNITY:

A GUIDE FOR LOCAL GOVERNMENTS Second Edition JANUARY 2011

Solar America

Source: www.urbanmilwaukee.com

Infrastructure

- Parking Meters
- Crosswalk Signals
- Street Lights
- Roads

Community Facilities

- Town/City Halls
- Libraries
- Schools
- Police & Fire Stations

Source: solaramericacommunities.gov

Source: NREL

Solar in the Comprehensive Plan

Solar in the Comprehensive Plan

Why focus on the Comprehensive Plan?

- Foundational policy document (vision, goals, objectives/policies ,and recommendations)
- Statutory priority given to comprehensive plans not necessarily given to other plans
- Sets the stage for how the community will maximize opportunities and minimize risks in public and private sector development
- Don't create silos integrate recommendations from other types of plans in the comprehensive plan (identify synergies and conflicts with other local resources)

Solar in the Comprehensive Plan

- Existing Conditions
- Goals, Policies, & Objectives
- Action Steps
- Framework for Implementation
 - Standards, Policies, & Incentives
 - Future Public & Private Investment

Solar in Local Development Regulations

Why is this Important?

- Establish a framework for making decisions about solar
- Mitigate potential nuisances
- Create a safe harbor for property owners to use their solar resources
- Encourage solar energy investment and production in the community

Source: www.heatingoil.com

Regulatory Framework

Removing Barriers

U.S. Department of Energy

Removing Barriers

Solar Laws exist in 40 states and the USVI to prevent barriers and authorize incentives, but people are often unaware of their rights.

Removing Barriers

- Make solar a by-right accessory use
- Allow modest adjustments to regulations (e.g., setbacks) to allow applicants to meet solar access requirements
- Streamline the approval process and reduce permitting costs
- Craft exceptions to permit solar in special districts (e.g., historic districts)
- Adopt solar access laws

Creating Incentives

Creating Incentives

- Streamline Approval Process
- Reduce Permitting Costs
- Increase Flexibility on Other Standards in Exchange for the Incorporation of Solar

Source: City of Bloomington, Indiana

Enacting Standards

The Purpose of Standards

- Clarify what types of solar systems are allowed and where
- Mitigate potential nuisances associated with solar equipment (e.g. visual impacts, encroachment)
- Define and protect solar access

Basic Considerations

Zoning Code and Subdivision Regulations	
SECTION	TOPICS TO ADDRESS
Permitted Uses	Primary vs. accessory
Dimensional Standards	Height, lot coverage, setbacks
Development Standards	Screening, placement (on building or site), site planning for solar access (lot and building orientation)
Definitions	Types of solar systems, solar access, and related terminology

Ē

Additional Considerations

- Require solar-orientation for new development
- Require solar-ready development
- Solar access protections

CONSIDER CONTEXT

- Residential
- Non-residential
- New development
- Infill or redevelopment

Small-Scale Solar Energy Systems

Typical Requirements

- Small-scale solar energy systems permitted as accessory uses in defined districts
- Placement on side and back roof slopes encouraged
- Must meet district height, lot coverage, and setback requirements (some allow for exemptions through variance)

Source: Clarion Associates

Large-Scale Solar Energy Systems

Typical Requirements

- Defined as solar farms, solar power plants, or "major" solar facilities
- Allowed as primary use in very limited locations
- Height limits
- Lot coverage limits
- Fencing and enclosures

Source: Solar Thermal Magazine

Solar Access Ordinances

Typical Requirements

- Protection of solar access
- Minimize shade on adjoining properties through limits on
 - Building height and massing
 - Tree and landscaping placement
- Solar access easements

Trees Block Solar Panels, and a Feud Ends in Court

Under a California law, a criminal court ruled that these redwood trees cast too much shade on Mark Vargas's solar panels. By FELICITY BARRINGER Published: April 7, 2008 SIGN IN TO E-MAIL

OR SAVE THIS

SINGLE PAGE

REPRINTS

品 PRINT

SUNNYVALE, Calif. — Call it an eco-parable: one Prius-driving couple takes pride in their eight redwoods, the first of them planted over a decade ago. Their electric-car-driving neighbors take pride in their rooftop solar panels, installed five years after the first trees were

Source: New York TImes

Solar Siting Ordinances

Typical Requirements

- Minimum number of lots must be "Solar-Oriented Lots"
- Flexible setbacks to maximize solar access
- Streets designed to maximize solar access

Source: www.portlandonline.com

Solar Ready Homes

Typical Requirements

- Structural/roof specifications
- Solar "stub-ins" required for new homes to support future photovoltaic panel or solar hot water heater installation
- Installation of PV Conduit or hot water pipes required on south, east, or west-facing roofs

Source: www.correctsolarinstallation.com

Resources

Resources

Project Website - FAQ Page

Frequently Asked Questions Planning and Zoning for Solar Energy

How do other communities encourage the use of solar energy systems through their comprehensive plans?

The local comprehensive plan presents a future vision of the physical, social, and economic characteristics of an entire city or county, and it specifies goals and policies intended to implement that vision. Because it is the most expansive official policy statement of a city council or county board, it is an ideal tool to support the deployment of solar energy systems on both public and private property.

There are two primary mechanisms by which comprehensive plans can support solar energy system deployment: (1) documenting the solar resource and (2) articulating policies to guide decision making.

First, comprehensive plans can provide information about the solar resource available in different parts of the community. This may be in the form a solar resource map showing which areas receive the most sunlight annually, or it may be a text description of site characteristics that maximize solar potential.

Second, comprehensive plans can articulate specific policies to guide decision making about solar energy system deployment on public and private land. These policies may address solar access protection, street and building orientation, or preferential locations for new solar energy systems.

Examples from PAS Essential Info Packet 30: Planning and Zoning for Solar Energy

- Fort Collins (Colorado), City of. 2011. City Plan. Environmental Health: Energy.
- Jackson (Oregon), County of. 2007. Jackson County Comprehensive Plan. Section 11, Energy Conservation.
- Greensburg (Kansas), City of. 2008. Greensburg Sustainable Comprehensive Plan. Housing; Future Land Use and Policy.
- Owensboro Metropolitan Planning Commission. 2007. Comprehensive Plan for Owensboro, Whitesville, Daviess County, Kentucky. Section 710. Climate and Solar Access.
- Pinal (Arizona), County of. 2009. We Create Our Future: Pinal County Comprehensive Plan. Chapter 7, Environmental Stewardship – Energy.
- Pleasanton (California), City of. 2009. General Plan 2005-2025. Energy Element.
- Shakopee (Minnesota), City of. 2009. Comprehensive Plan 2030. 12, Solar Access.
- Victoria (Minnesota), City of. 2010. 2030 Comprehensive Plan Update. Part II.L.1, Plan Elements – Special Resources – Solar Access Protection. Prepared by TKDA, St. Paul, Minn.

http://www.planning.org/research/solar/faq.htm

Essential Information Packet

http://www.planning.org/pas/infopackets/open/eip30.htm

Customized Research Assistance

- Available to anyone with a question related to planning for solar energy
- Provided through PAS Inquiry Answer Service
- Submit questions to pas@planning.org with subject line "Solar Energy Inquiry"

Agenda

08:40 - 09:00	Solar 101
08:50 – 09:20	Planning and Zoning for Solar
09:20 - 09:30	Streamlining the Permitting Process
09:30 – 09:40	Break
09:40 – 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
:00 - :20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
11:40 - 12:00	Next Steps for Solar in Region

The Permitting Process: Challenges

18,000+ local jurisdictions

with unique permitting requirements

Source: http://www.nrel.gov/docs/fy12osti/54689.pdf

The Permitting Process: Challenges

Local permitting processes add on average

to the installation cost of residential PV

Source: SunRun

The Permitting Process: Challenges

Source: Forbes

Expedited Permitting

Solar Permitting Best Practices:

- \checkmark Fair flat fees
- ✓ Electronic or over-the-counter issuance
- Standardized permit requirements

\checkmark Electronic materials

Expedited Permitting

Solar Permitting Best Practices:

- \checkmark Training for permitting staff in solar
- \checkmark Removal of excessive reviews
- \checkmark Reduction of inspection appointment windows
- ✓ Utilization of standard certifications

Expedited Permitting: Case Study

Breckenridge, Colorado Population: 4,540

Source:Wikipedia

Expedited Permitting: Case Study

Breckenridge charges no fees to file for a solar permit

Expedited Permitting: Case Study

Breckenridge offers a short turn around time for solar permits

Source: Vote Solar (http://votesolar.org/wp-content/uploads/2011/03/COPermitReport.pdf)

Expedited Permitting: Case Study

U.S. Department of Energy

Expedited Permitting

Resource Solar ABCs

Expedited Permitting:

- Simplifies requirements for PV applications
- Facilitates efficient review of content
- Minimize need for detailed studies and unnecessary delays

Sonar Ameri	Collaborate + Contribute + Transform
	7
ABOUT US CODES & ST	TANDARDS CURRENT ISSUES
ASTM International	Codes & Standards
LAPMO	The Solar America Board for Codes and Standards (Solar ABCs) collaborates and
International Code Council	enhances the practice of developing, implementing, and disseminating solar and standards. The Solar ABCs provides formal coordination in the planning
Int'l Electrotechnical Comm.	revision of separate, though interrelated, solar codes and standards. We also provide access for stakeholders to participate with members of standards making
IEEE	bodies through working groups and research activities to set national priorities
NFPA – National Elec. Code	dissemination of documents, regulations, and technical materials related to solar
SEMI	codes and standards.
Underwiters Laboratories	The Solar ABCs creates a centralized home to facilitate photovoltaic (PV) market transformation by:
	Creating a forum that fosters generating consensus 'best practices' materials.
	Disseminating such materials to utilities, state and other regulating agencies.
	Answering code-related questions (technical or statutory in nature).
	 Providing feedback on important related issues to DOE and government agenci
	Learn more about solar codes and standards development:
	The below organizations all publish codes and standards for PV products and each organization has its own process to develop and publish standards.
	ASTM
	IAPMO Standards
	International Code Council
	 International Electrotechnical Commission
	• IEEE
	 National Fire Protection Association
	SEMI
	Underwriters Laboratories
	SERI Independent photophilae
	National Fire Protection Association
	· TEEE
	 International Electrotechnical Commission

Expedited Permitting: Application

SOLAR PV SYSTEM INSTALLATIONS WITH AN ELECTRICAL PERMIT ONLY

If the Licensed Electrical Contractor can commit to meeting the following installation conditions, limitations and requirements in the installation of the solar PV system, the Department will waive the requirement for a separate building permit and allow the electrical permit to apply to the full installation.

A separate building permit application with construction plans must be obtained if the following conditions and requirements cannot be met or the Electrical Contractor performing the electrical installation is not willing to accept responsibility for the structural installation of the system.

Conditions:

- Installation must be on the roof of a one- or two-family dwelling.
- Installation may not occur on roof systems comprised of engineered trusses. These systems will require building permits
- Property is <u>not</u> designated historical by the Philadelphia Historical Commission.
- Electrical Contractor must agree to accept responsibility for the structural installation of the roof-top equipment.
- If the contractor finds the installation cannot meet these requirements, a separate building permit must be obtained.

Installation Limitations and Requirements

- Equipment weighs less than 5 pounds per square foot (psf).
- Equipment imposes less than 45 psf point load in any location.
- The height of the system is less than 18 inches above the adjacent roof.
- A three (3) foot clearance must be provided around all equipment.
- Installation includes a pre-engineered ballasted or mounting structure with attachments both designed for a wind load of 90 mph.
- The equipment must be installed as per manufacturer's instructions.

Expedited Permitting: Application

Electrical Permit Limitations and Requirements

Specifically, the system must be 10kW or less, be composed of four or less series strings, and have a total inverter capacity of less then 13.44kW, with all materials, devices and equipment labeled and listed by a certified testing agency. Solar PV system electrical permit applications must include the following information:

- Detailed riser diagrams
- Conduit and wiring details
- Grounding detail

- Electrical service information
- Module information
- Inverter information

Electrical Permits

Systems that meet the electrical limitations detailed above may be eligible for a streamlined permit review. For more specific information on the electrical permit requirements above, please see our "Permit Checklist for Solar PV Systems."

Zoning Requirements

Solar PV systems installed on the roof of a one- or two- family dwelling do not require a zoning permit.

Application Process

When Licensed Electrical Contractors apply for a permit related to the electrical work required to properly install a solar PV system on one or two family dwellings, they may agree to meet the conditions, limitations and requirements of the Building Code established in this Solar PV Installation Standard.

This agreement to meet the limitations and requirements above must be noted in the "Brief Description of Work" field on a standard electrical permit application and the application signed by the Electrical Contractor.

Expedited Permitting: Application

Powered by **Sun**Shot U.S. Department of Energy

Source: City of Irvine, Department of Community Development (http://www.cityofirvine.org/cityhall/cd/buildingsafety/permit_processing_center/residential_photovoltaic_systems/defaul t.asp)

Expedited Permitting

Resource Interstate Renewable Energy Council

Outlines emerging approaches to efficient rooftop solar permitting

www.irecusa.org

Emerging Approacto Efficient Roo	hes
Solar Permitting	ftop
www.irecusa.org	May 2012
Interstate Renewable Ene	rgy Council, Inc.
www.irecusa.org	May 2012
Interstate Renewable Ene	rgy Council, Inc.

Agenda

08:40 - 09:00	Solar 101
08:50 – 09:20	Planning and Zoning for Solar
09:20 - 09:30	Streamlining the Permitting Process
09:30 - 09:40	Break
09:40 - 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
:00 - :20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
11:40 - 12:00	Next Steps for Solar in Region

Agenda

08:40 - 09:00	Solar 101
08:50 – 09:20	Planning and Zoning for Solar
09:20 - 09:30	Streamlining the Permitting Process
09:30 – 09:40	Break
09:40 - 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
11:00 - 11:20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
:40 - 2:00	Next Steps for Solar in Region

Activity: Identifying Benefits

What is the greatest benefit solar can bring to your community? [Blue Card]

Right Now

During Session

After Break

[Results from Survey]

Benefits of Solar Energy

- Local economy growth
- Local jobs
- Energy independence
- Stabilizes price volatility
- Valuable to utilities
- Smart investment

Benefit: Economic Growth

Source: SEIA/GTM Research - 2010 Year in Review Report <u>http://www.seia.org/galleries/pdf/SMI-YIR-</u> 2010-ES.pdf SEIA/GTM Research- 2009 year in Review Supplemental Charts

Benefit: Job Growth

Source: SEIA Estimates (2006-2009), The Solar Foundation's National Solar Jobs Census 2010 (2010), The Solar Foundation's National Solar Jobs Census 2011 (2011-2012).

Benefit: Energy Independence

U.S. Natural Gas Imports

Source: EIA http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=mttimus2&f=a

Benefit: Stabilize Energy Prices

Source: NEPOOL

Benefits: Valuable to Utilities

- Avoided Energy Purchases
- Avoided T&D Line Losses
- Avoided Capacity Purchases
- Avoided T&D Investments
- Fossil Fuel Price Impacts
- Backup Power

Benefits: Valuable to Utilities

Value to the utility is **10 to 25 cents** beyond the value of the electricity

Source: http://www.asrc.cestm.albany.edu/perez/2011/solval.pdf

Benefit: Smart Investment for Homes

From NREL:

Solar homes sold

20% faster

and for

17% more

than the equivalent non-solar homes in surveyed California subdivisions

Source: http://www.nrel.gov/docs/fy07osti/38304-01.pdf

Benefit: Smart Investment for Homes

From SunRun:

Source: Tracking the Sun IV, SunRun

Benefit: Smart Investment for Business

Benefit: Smart Investment for Business

Source: Solar Energy Industries Association

Benefit: Smart Investment for Government

Activity: Addressing Barriers

What is the greatest barrier to solar adoption in your community? [Green Card]

Right Now

During Session

After Break

[Results from Survey]

Some things you may hear...

Fact: Solar works across the US

Source: National Renewable Energy Laboratory

Fact: Solar is a ubiquitous resource

Resource Availability

Source: Perez & Perez. 2009. A fundamental look at energy reserves for the planet.

US Average Installed Cost for Behind-the-Meter PV

Tracking the Sun IV: The Installed Cost of Photovoltaics in the US from 1998-2010 (LBNL), SEIA/GTM Research. 2012. Solar Market Insight 2011 Year-in-Review.

Tracking the Sun IV: The Installed Cost of Photovoltaics in the US from 1998-2010 (LBNL), SEIA/GTM Research. 2012. Solar Market Insight 2011 Year-in-Review.

Golden Goal Countries Meeting Golden Goal Countries Missing Golden Goal

Fact: All energy is subsidized

Sources: DBL Investors

Barriers Still Exist

U.S. Department of Energy

Source: NREL (http://ases.conference-services.net/resources/252/2859/pdf/SOLAR2012_0599_full%20paper.pdf) (http://www.nrel.gov/docs/fy12osti/53347.pdf) (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Agenda

U.S. Department of Energy

08:40 - 09:00	Solar 101
08:50 - 09:20	Planning and Zoning for Solar
09:20 - 09:30	Streamlining the Permitting Process
09:30 - 09:40	Break
09:40 - 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
11:00 - 11:20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
11:40 - 12:00	Next Steps for Solar in Region
Powered by SunShot	
Utility Market Stages

Source: Solar Electric Power Association

Electric Market Status (2010)

Retail Sales	Investor-Owned	Municipal	Rural Coops	TOTAL
Indiana	80.4%	7.4%	12.2%	105.5 M MWh
Ohio	88.3%	6.6%	5.1%	152.2 M MWh
Kentucky	55.8%	8.9%	35.3%	75.7 M MWh

# Customers	Investor-Owned	Municipal	Rural Coops	TOTAL
Indiana	74.3%	8.4%	17.3%	3,106,396
Ohio	86.1%	6.9%	7.0%	5,442,501
Kentucky	54.5%	9.3%	36.2%	2,230,399

Prices	Investor-Owned	Municipal	Rural Coops	Average
Indiana	7.54¢/kWh	8. 7¢/kWh	10.21¢/kWh	8.05¢/kWh
Ohio	9.70¢/kWh	9.66 ¢/ kWh	10.45 ¢/ kWh	9.75¢/kWh
Kentucky	7.07¢/kWh	7.95¢/kWh	8.65¢/kWh	7.73¢/kWh

Source: US Energy Information Administration

www.dsireusa.org / August 2012

RPS: Indiana Overview

- Clean Energy Portfolio Goal
- 10% of 2010 sales from clean energy by 2025
- No solar carve-out

 Indiana Utility Regulatory Commission (IURC) allows participating utilities to receive incentives to cover the cost of these projects

Source: DSIRE Solar (http://www.dsireusa.org/solar/incentives/incentive.cfm?Incentive_Code=VA10R&re=1&ee=1)

Solar Renewable Energy Credits (SRECs)

Three Requirements: RPS solar carve out

Unbundled, tradeable credits

Penalty for non-compliance – solar alternative compliance payment (SACP)

SRECs in Indiana

As there is no solar carve-out, Indiana lacks a viable SREC market.

However, system owners may be eligible to participate in the OH SREC market.

Net Metering

Net metering allows customers to export power to the grid during times of excess generation, and receive credits that can be applied to later electricity usage

Net Metering: Overview

Morning

Net Metering: Overview

Net Metering: Overview

Solar covers 100% of the customer's load, even at night!

Net Metering: State Policies

Note: Numbers indicate individual system capacity limit in kilowatts. Some limits vary by customer type, technology and/or application. Other limits might also apply. This map generally does not address statutory changes until administrative rules have been adopted to implement such changes.

Net Metering: Market Share

More than 93% of distributed PV Installations are net-metered

Source: IREC (http://www.irecusa.org/wp-content/uploads/IRECSolarMarketTrends-2012-web.pdf)

Net Metering: Resources

Provides a "report card" for state policy on net metering and interconnection

http://freeingthegrid.org/

Net Metering: Indiana

Eligible Renewable/ Other Technologies:	Solar Thermal Electric, Photovoltaics, Wind, Biomass, Hydroelectric, Fuel Cells, Hydrogen, Small Hydroelectric, Fuel Cells using Renewable Fuels
Applicable Sectors:	Commercial, Industrial, Residential, Nonprofit, Schools, Local Government, State Government, Fed. Government, Multi-Family Residential, Low-Income Residential, Agricultural, Institutional
Applicable Utilities:	Investor-owned utilities
System Capacity Limit:	1 MW
Aggregate Capacity Limit:	1% of utility's most recent peak summer load
Net Excess Generation:	Credited to customer's next bill at retail rate; carries over indefinitely
REC Ownership:	Not addressed
Meter Aggregation:	Not addressed

Net Metering: Indiana

Eligible Renewable/ Other Technologies: Applicable Sectors:	Solar Thermal Electric, Photovoltaics, Wind, Biomass, Hydroelectric, Fuel Cells, Hydrogen, Small Hydroelectric, Fuel Cells using Renewable Fuels Commercial, Industrial,
	Residential, Nonprofit, Schools, Local Government, State Government, Fed. Government, Multi-Family Residential, Low-Income Residential, Agricultural, Institutional
Applicable Utilities:	Investor-owned utilities
System Capacity Limit:	1 MW
Aggregate Capacity Limit:	1% of utility's most recent peak summer load
Net Excess Generation:	Credited to customer's next bill at retail rate; carries over indefinitely
REC Ownership:	Not addressed

Net Metering: Indiana

- Remove system size limitations to allow customers to meet all on-site energy needs
- Increase capacity to at least 5% of a utility's peak demand
- Adopt safe harbor language to protect customer-sited generators from extra and/or unanticipated fees
- Expand net metering to all utilities

Eligible Renewable/ Other Technologies:	Solar Thermal Electric, Photovoltaics, Wind, Biomass, Hydroelectric, Fuel Cells, Hydrogen, Small Hydroelectric, Fuel Cells using Renewable Fuels
Applicable Sectors:	Commercial, Industrial, Residential, Nonprofit, Schools, Local Government, State Government, Fed. Government, Multi-Family Residential, Low-Income Residential, Agricultural, Institutional
Applicable Utilities:	Investor-owned utilities
System Capacity Limit:	1 MW
Aggregate Capacity Limit:	1% of utility's most recent peak summer load
Net Excess Generation:	Credited to customer's next bill at retail rate; carries over indefinitely
REC Ownership:	Not addressed
Meter Aggregation:	Not addressed

Net Metering: Virtual

No direct connection necessary

Net Metering: Meter Aggregation

Aggregation of some form authorized by state

But...It's complicated

- Ownership requirements
- Contiguous vs. non-contiguous properties
- Multiple customers
- Multiple generators
- Modified system/aggregate system size limits

- Rollover rates
- Distance limitations
- Number of accounts
- How to address accounts on different tariffs

Net Metering: Resources

Resource Interstate Renewable Energy Council

IREC developed its model rules in an effort to capture best practices in state net metering policies.

www.irecusa.org

Interconnection

5,000+ utilities

with unique interconnection procedures

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf

Interconnection: Background

- **2000:** NREL finds that interconnection is a significant barrier to customer sited DG
- **2005:** Congress requires state regulator authorities to consider an interconnection standard (IEEE 1547)
- 2012: 43 States & DC have adopted interconnection standards
 - CA Rule 21 MADRI Procedures
 - FERC SGIP IREC Procedures

Interconnection: Best Practices

- I. Use standard forms and agreements
- 2. Implement expedited process
- Implement simplified procedure for small solar arrays

Interconnection: State Policies

<u>Notes</u>: Numbers indicate system capacity limit in kW. Some state limits vary by customer type (e.g., residential versus non-residential). "No limit" means that there is no stated maximum size for individual systems. Other limits may apply. Generally, state interconnection standards apply only to investor-owned utilities.

Interconnection: Indiana

Eligible Renewable/	Solar Thermal Electric, Photovoltaics Landfill Gas
other reenhologies.	Wind Biomass
	Hydroelectric, Fuel Cells.
	CHP/Cogeneration,
	Anaerobic Digestion, Fuel
	Cells using Renewable Fuels,
	Microturbines, Other
	Distributed Generation
	Technologies
Applicable Sectors:	Commercial, Industrial,
	Residential, Nonprofit,
	Schools, Local Government,
	State Government, Fed.
	Government, Agricultural,
	Institutional
Applicable Utilities:	Investor-owned utilities,
	regulated municipal utilities,
	regulated electric
	cooperatives
System Capacity Limit:	No limit specified
Standard Agreement:	Yes
Insurance	Amount specified by IURC
Requirements:	for net-metered systems;
	not specified for other
	systems
External Disconnect	Utility's discretion
Switch:	
Net Metering Required	No

Interconnection: Indiana

Eligible Renewable/	Solar Thermal Electric,
Other Technologies:	Photovoltaics, Landfill Gas,
	Wind, Biomass,
	Hydroelectric, Fuel Cells,
	CHP/Cogeneration,
	Anaerobic Digestion, Fuel
	Cells using Renewable Fuels,
	Microturbines, Other
	Distributed Generation
	Technologies
Applicable Sectors:	Commercial, Industrial,
	Residential, Nonprofit,
	Schools, Local Government,
	State Government, Fed.
	Government, Agricultural,
	Institutional
Applicable Utilities:	Investor-owned utilities,
	regulated municipal utilities,
	regulated electric
	cooperatives
System Capacity Limit:	No limit specified
Standard Agreement:	Yes
Insurance	Amount specified by IURC
Requirements:	for net-metered systems;
	not specified for other
	systems
External Disconnect	Utility's discretion
Switch:	
Net Metering Required	No

Interconnection: Indiana

Recommendations:

 Prohibit utility's discretion for redundant external disconnect switch

Eligible Renewable/ Other Technologies:	Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Fuel Cells, CHP/Cogeneration, Anaerobic Digestion, Fuel Cells using Renewable Fuels,
	Microturbines, Other Distributed Generation Technologies
Applicable Sectors:	Commercial, Industrial, Residential, Nonprofit, Schools, Local Government, State Government, Fed. Government, Agricultural, Institutional
Applicable Utilities:	Investor-owned utilities, regulated municipal utilities, regulated electric cooperatives
System Capacity Limit:	No limit specified
Standard Agreement:	Yes
Insurance Requirements:	Amount specified by IURC for net-metered systems; not specified for other systems
External Disconnect Switch:	Utility's discretion
Net Metering Required	No

Interconnection: Resources

Resource Interstate Renewable Energy Council

IREC developed model interconnection procedures in an effort to capture emerging best practices in this vital area.

www.irecusa.org

Agenda

U.S. Department of Energy

08:40 – 09:00	Solar 101
08:50 – 09:20	Planning and Zoning for Solar
09:20 – 09:30	Streamlining the Permitting Process
09:30 – 09:40	Break
09:40 – 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:20 – 10:50 10:50 – 11:00	Understanding Solar Financing Break
10:20 – 10:50 10:50 – 11:00 11:00 – 11:20	Understanding Solar Financing Break John Hazlett, City of Indianapolis
10:20 - 10:50 10:50 - 11:00 11:00 - 11:20 11:20 - 11:40	Understanding Solar Financing Break John Hazlett, City of Indianapolis Laura Arnold, Indiana Distributed Energy Alliance
10:20 - 10:50 10:50 - 11:00 11:00 - 11:20 11:20 - 11:40 11:40 - 12:00	Understanding Solar Financing Break John Hazlett, City of Indianapolis Laura Arnold, Indiana Distributed Energy Alliance Next Steps for Solar in Region

Ownership Options

Direct Ownership

Third-Party Ownership

Direct Ownership

Direct Ownership

- Cost Benefit
- Installed Cost
 Avoided Energy Cost
- Maintenance
 Excess Generation
- Direct Incentive
 Performance Incentive

Direct Ownership

Third Party Ownership

Third Party Ownership

Third Party Ownership

- Cost Benefit
- PPA or Lease Rate
 Avoided Energy Cost

Excess Generation

Third Party Ownership: State Policy

Authorized by state or otherwise currently in use, at least in certain jurisdictions within in the state Apparently disallowed by state or otherwise restricted by legal barriers

Status unclear or unknown

Note: This map is intended to serve as an unofficial guide; it does not constitute legal advice. Seek qualified legal expertise before making binding financial decisions related to a 3rd-party PPA. See following slides for additional important information and authority references.

Incentives

Incentives

Federal	Investment Tax Credit	Qualified Conservation Energy Bonds	

Incentives: Federal

Investment Tax Credit

Type: Tax Credit

Eligibility: For-Profit Organization

Value: 30% of the installation cost

Availability: Through 2016

Incentives: Federal

Incentives: Federal

Incentives

State	Clean Energy Credits	Sales Tax Exemption	Property Tax Exemption

Incentives: State

Clean Energy Credits

Type: Performance Based Incentive

Eligibility: Everyone

Value: Unknown

Availability: Starting 2013

Incentives: State

Sales Tax Exemption

Type: Tax Exemption

Covers: Equipment & Machinery *

Value: 100% of the sales tax

* While there is an explicit exemption for wind energy systems, it is unclear if this exemption applies to solar as well

Source: DSIRE, Laura Arnold

Incentives: State

Property Tax Exemption

Type: Tax Exemption

Value: Installation market value

Availability: Starting January 2012

Source: DSIRE

Incentives

Utility	IPL Feed in Tariff	IPL Rebate	NIPSCO Feed in Tariff

Incentives: Utility

IPL Rebate

Type: Direct Cash Incentive

Value: \$2 per Watt for projects 1 – 19.9 kW

Budget: \$200,000

Availability: Through 2013

Feed in Tariff

Feed in Tariff

Incentives: Utility

IPL Feed-in Tariff (REP)

Term: 15 Years

Value: 20 – 100 kW = \$0.24 / kWh 100 kW – 1 MW = \$0.20 / kWh

*Note: 30% is priced through a reverse auction

Limit: Up to 153,000 MWh per year

Sign Up Deadline: October 1, 2012

Source: DSIRE

Incentives: Utility

NIPSCO Feed-in Tariff

Term: 15 Years

Value: Up to 10 kW = 0.30 / kWh + 2% Escalator 10 kW - 2 MW = 0.26 / kWh + 2% Escalator

Limit: 30 MW

Availability: Through 2013

Source: DSIRE

Agenda

U.S. Department of Energy

08:40 - 09:00	Solar 101
08:50 – 09:20	Planning and Zoning for Solar
09:20 – 09:30	Streamlining the Permitting Process
09:30 – 09:40	Break
09:40 - 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
:00 - :20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
:40 - 2:00	Next Steps for Solar in Region
Powered by SunShot	

Agenda

08:40 – 09:00	Solar 101
08:50 – 09:20	Planning and Zoning for Solar
09:20 – 09:30	Streamlining the Permitting Process
09:30 – 09:40	Break
09:40 - 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
11:00 - 11:20	John Hazlett, City of Indianapolis
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
:40 - 2:00	Next Steps for Solar in Region

John Hazlett

Director of Sustainability City of Indianapolis

Agenda

08:40 – 09:00	Solar 101
08:50 – 09:20	Planning and Zoning for Solar
09:20 – 09:30	Streamlining the Permitting Process
09:30 – 09:40	Break
09:40 – 10:00	Addressing Solar Barriers Activity
10:00 - 10:20	Understanding Utility Regulations
10:20 - 10:50	Understanding Solar Financing
10:50 - 11:00	Break
11:00 - 11:20	John Hazlett, City of Indianapolis
11:20 - 11:40	Laura Arnold, Indiana Distributed Energy Alliance
11:40 - 12:00	Next Steps for Solar in Region

Laura Arnold

President Indiana Distributed Energy Alliance

Agenda

11:40 - 12:00	Next Steps for Solar in Region
:20 - :40	Laura Arnold, Indiana Distributed Energy Alliance
:00 - :20	John Hazlett, City of Indianapolis
10:50 - 11:00	Break
10:20 - 10:50	Understanding Solar Financing
10:00 - 10:20	Understanding Utility Regulations
09:40 - 10:00	Addressing Solar Barriers Activity
09:30 - 09:40	Break
09:20 - 09:30	Streamlining the Permitting Process
08:50 - 09:20	Planning and Zoning for Solar
08:40 - 09:00	Solar 101

Activity: Next Steps

What do you pledge to do when you leave today's workshop? [Orange Card]

About the SunShot Solar Outreach Partnership

Technical Support

- "Ask an Expert' Live Web Forum"
- Ask an Expert' Web Portal
- Peer Exchange Facilitation
- In-Depth Consultations
- Customized Trainings

	ENERGY		
an Expert' Live Web Forums	SunShot Initiative		
an Expert' Web Portal	HOME ABOUT SOLAR PROGRAM FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS ELESE + Sunshel Initiative + Information Resources + Solar Energy Resource Center III Bits Mar		
r Exchange Facilitation	Nome Ask an Expert QUESTIONS BY TOPIC July 30, 2012 QUESTIONS BY TOPIC All Topics Q Our community just added a dozen 240 watt panels to our courthouse annex. I was planning on 240 watt max from the panels, but the inverters are of a lower wattage, 200. Is this common across all applications? Completing Installations on Government Facilitie (1)		
epth Consultations	A. First, we recommend using a professional PV system designer and installer. If I understand the question cornectly, the answer is yes, meeters are typically sized at 10-20% below the maximum capacity of the PV panel array. This is because a PV system rately, if ever, operates at its maximum capacity because of clouds, temperature, dust, inverter efficiency losses, etc. PV system rates are should be taken into account where designing a PV system output and because larger inverters are more usually used to match actual PV system output and because larger inverters are more		
tomized Trainings	expensive. In some climates, however, it might make sense to spend the extra money on a leaves the PV system owner the potential opportunity to expand the size of the PV anay without having to replace the inverter with one of a larger capacity. I have also read abud sizing imvertes larger in order to be able to take owntage of "dogs" of cloud" effects—which is really cool and really geeky. See this from <u>Bit Brooks</u> .		
www4.eere.energy.gov/solar/su	Inspective discrete and the product of the product		
	taken isto account when designing a PV system and so a smaller menter capacity is used?- used to march articul PV ocutien output and hearer		

For more information email: solar-usa@iclei.org

Jayson Uppal

Meister Consultants Group

Philip Haddix

The Solar Foundation

David Morley

American Planning Association

jayson.uppal@mc-group.com (617) 209-1990 phaddix@solarfound.org (202) 469-3750

dmorley@planning.org (312) 786-6392